
Reprinted from the

Proceedings of the
Linux Symposium

Volume Two

July 21th–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Linux-tiny And Directions For Small Systems

Matt Mackall
Digeo, Inc.

mpm@digeo.com

Abstract

Linux-tiny is a project to reduce the mem-
ory and storage footprint of the 2.6 Linux ker-
nel for embedded, handheld, legacy, and other
small systems. I describe strategies for kernel
size reduction, some of the major areas already
investigated and the results achieved, as well as
some avenues for further exploration.

1 Introduction

Historically, Linux had a reputation for run-
ning on very modest systems. My first dedi-
cated Linux box, running a 0.99 kernel circa
1994, provided mail, FTP, web, dial-in, and
shell services on a 16MHz 386SX with a mere
4 megabytes of RAM. In the 10 years since
then, Linux has grown to the point where it
runs on machines with over a thousand proces-
sors and a terabyte of RAM. Not surprisingly,
a modern Linux distribution can have difficulty
getting to a shell prompt on machines with less
than 8 megabytes of RAM, let alone doing use-
ful work.

1.1 What happened?

In the time between the 0.99 and 2.6 kernels,
we’ve seen Linux become a serious commer-
cial endeavor, we’ve seen kernel hackers get
jobs (and get big machines on their desks), and
we’ve seen a massive boom in Internet use and
personal computing. Linux developers have

been targeting high end computing and ris-
ing demand for hardware has seen prices drop
tremendously.

But there are still small machines! Hand-helds
and embedded systems are perennially pressed
for space to match their desktop counterparts
and many people throughout the world still rely
on legacy machines to get their work done.
What can be done to recapture the ‘small is
beautiful’ utility of those early systems?

1.2 Where is the growth?

The process by which any large software
project grows can aptly be described asdeath
by a thousand cuts. The accumulation of bloat
occurs change by change and creeps in from
several different directions.

Perhaps the most visible is the addition of new
features, which generally requires the intro-
duction of wholly-new code. Frequently fea-
tures are considered so small or so essential
that no thought is given to making them op-
tional. As the median system size grows, this
new code tends to be more verbose and less
concerned with space issues.

The next, more subtle culprit isperformance.
Given the fundamental importance of kernel
performance to overall system performance,
trade-offs of size for speed are easy to justify.
Unfortunately the accumulation of many such
trade-offs can leave us with a system that no
longer boots. Ironically, the evolution of pro-

318 • Linux Symposium 2004 • Volume Two

cessors has brought us to a point where cache
footprint can be critical to performance so a lot
of the choices that have been made in this area
bear rethinking.

Next we havecompatibility andcorrectness.
Every time the system is extended to better
support a slightly different piece of hardware
or work around another corner case, more code
is added. Occassionally cleanups and unifica-
tions make some of this code redundant, but
this is the exception. A related phenomenon is
the evolution of the kernel APIs and the accu-
mulation of obsolete code for the sake of back-
ward compatibility.

2 Linux-Tiny for the small system
niche

There have been numerous efforts to address
the above phenomena for various components
of Linux systems, but most of the attention
has been addressed at userspace (arguably the
biggest offender). Experiments with pre-2.6.0
kernels however suggested it was time to pay
some more attention to the kernel itself. So
in December of 2003, I decided to create a
new 2.6-based tree dedicated to small systems
which I named Linux-Tiny [3] (someone had
already borrowed my initials for their tree).

2.1 Methodology

With stated targets of embedded, hand-held,
and legacy machines, the -tiny tree attempts
to tailor the kernel to the needs of small sys-
tems. The tree is maintained as a series of small
patches stacked on top of mainline kernel re-
leases, managed with the quilt tool [1] (previ-
ously with Andrew Morton’s patch scripts [4]).

Patches try to observe the following criteria:

• configurable: changes that are not clearly

wins for all systems should be config-
urable so that users can make their own
trade-offs

• non-invasive: patches should be small,
self-contained, and largely independent so
that integrators can cherrypick the patches
they’d like to use

• mergeable: while not mandatory, patches
should try to be acceptable to the mainline
kernel in both style and approach; merg-
ing to mainline is a priority

In addition to patches focusing on reducing
kernel footprint, I’ve also added a number of
patches to do debugging and auditing includ-
ing netconsole, kgdb, and kgdb-over-ethernet
support.

2.2 Setting goals

Everyone has a different set of functionality re-
quirements in mind for small systems. The fea-
tures needed on a handheld are very different
from those needed for a network appliance or
a kiosk. Thus, choosing a subset of features to
develop towards is tricky.

The approach I’ve taken is to choose a series
of targets to optimize, and the first is a min-
imal x86 kernel with filesystem, console, and
TCP/IP support. How small can we make this
kernel? This puts a focus on the most of the
common core functionality of Linux and pro-
vides a useful benchmark for progress.

3 Finding bloat

As mentioned above, there are many sources
of bloat. There are also several forms it can
take: as superfluous code, statically or dy-
namically allocated data, inline functions or
macros, compiler mis-optimizations, or cut-n-
paste coding.

Linux Symposium 2004 • Volume Two • 319

Given that the kernel is on the order of several
hundred kilobytes, tackling bloat is going to
be a matter of trimming several kilobytes here
and a couple kilobytes there. While one could
simply pick any source file and read through it
searching for cleanup opportunities, there are
some more straightforward ways of finding the
“low-hanging fruit”.

3.1 Using nm(1) and size(1)

The easiest place to begin is by using thenm
tool to find large functions and data structures.
Comparing the (hexadecimal) numbers from
nm(1) with size(1) gives us a good start
at understanding the relative sizes of some of
the major subsystems and their components
compared to the kernel as a whole. For in-
stance, we can see by comparing Table 1 and
Table 2 that the staticide_hwifs data struc-
ture alone takes 15360 bytes, over 2% of the
data portion of the default kernel.

3.2 Measuring function inlining

Function inlining and macro expansion present
a special problem for our bloat detection ef-
forts. In the early 1990s, inlining was a very
popular performance technique to avoid func-
tion call branches. A great number of key func-
tions are marked for inlining in the kernel and
their usage and size impact is obscured because
they become a seamless part of the functions
that use them. Auditing their usage becomes
a matter of convincing the compiler to tell us
when inlines are being instantiated in a build
and then estimating how large these functions
are when expanded inline.

Rather than modifying the compiler itself, the
first part of this puzzle was hacked around by
redefininginline to include the GCC exten-
sion __attribute__((deprecated)) .
This causes a very useful warning like the fol-
lowing to be generated:

arch/i386/kernel/semaphore.c:58:
warning: ‘get_current’ is
deprecated (declared at
include/asm/current.h:16)

By post-processing these voluminous warning
messages, we can determine which inline func-
tions are instantiated directly in C files as well
as which are called as parts of other inlines and
finally calculate the total number of direct or
indirect instantiations of each (see Table 3).

The second part of this puzzle was more chal-
lenging. While we know in which modules
and how often inlines are instantiated, we can-
not yet calculate their sizes. I made several
attempts to generate approximate size data by
looking at GCC’s symbolic debugging output,
but this tended to be easily confused by inlin-
ing and was too inaccurate for use.

Recently Denis Vlasenko took another stab
at this and wrote a set of scripts called in-
line_hunter [5] to generate a set of dummy
functions wrapping single calls to inlines.
While these sizes won’t directly reflect the
size of inline instantiations due to function
call overhead and lost optimization opportuni-
ties, for larger inline functions, it has proven
fairly representative. Some of the larger inlines
found with this approach are shown in Table 4.

3.3 Tracking dynamic allocations

Of course much of the kernel’s memory foot-
print is from dynamic allocations. Memory
used for page tables, tracking running pro-
cesses, indexing hashes and so forth is allo-
cated at runtime and can vary with the size of
the load. A number of these are hash tables to
increase look-up performance, which for small
systems can be less important than simply fit-
ting in memory.

There are several important allocators in the
kernel. First, the bootmem allocator which

320 • Linux Symposium 2004 • Volume Two

2.6.5\$ nm --size -r vmlinux | head -20
00008000 b __log_buf
00007000 D irq_desc
00004e78 d pci_vendor_list
00004000 b bh_wait_queue_heads
00003c00 B ide_hwifs
0000213a T vt_ioctl
00002000 D init_thread_union
00001880 D contig_page_data
0000163b T journal_commit_transaction
00001500 b irq_2_pin
000012f5 T tcp_sendmsg
00001162 t n_tty_receive_buf
00001080 d per_cpu__tvec_bases
00001000 t translation_table
00001000 b sd_index_bits
00001000 D init_tss
00001000 b doublefault_stack
00001000 B con_buf
00001000 b cache_defer_hash
00000fe0 T cdrom_ioctl

Table 1: nm output for 2.6.5 default config

handles a number of critical allocations at
startup. As there are not terribly many of
these, they can be audited very simply with
printk() techniques.

Second, the SLAB allocator is used to quickly
allocate sets of objects of the same size and
type. The kernel provides a way to track these
allocations with/proc/slabinfo .

The more generalkmalloc() allocator has
been rebuilt on top of the aforementioned
SLAB allocator, translating kmalloc requests
into requests from a set of ascending generic
SLAB sizes. Thus allkmalloc() allo-
cations are lumped together by size in the
/proc/slabinfo output. That can be help-
ful if you know what you’re looking for, but
doesn’t give many hints as to which parts of
the kernel are using that memory.

To address this deficiency, I’ve created a
small footprint tool for tracking allocations via
/proc/kmalloc (see Table 5). This works
by tracking the address of each allocation along
with the address of the allocating function in
a simple hash table. Also tracked are net and
gross allocation sizes and counts per caller.
When akfree() call is made, it is matched
up to its caller for accounting purposes and re-
moved from the hash. Thus it is possible not
only to determine how much dynamic memory
is used by each function but also to easily iden-
tify memory leaks.

4 Some notable opportunities for
code trimming

The above methods have revealed numerous
opportunities for cutting back the kernel’s

Linux Symposium 2004 • Volume Two • 321

2.6.5\$ size vmlinux */built-in.o
text data bss dec hex filename

3366220 673296 166824 4206340 402f04 vmlinux
1181276 250808 48000 1480084 169594 drivers/built-in.o

735152 32593 30628 798373 c2ea5 fs/built-in.o
18151 1120 1316 20587 506b init/built-in.o
21841 172 204 22217 56c9 ipc/built-in.o

159632 16115 42402 218149 35425 kernel/built-in.o
2870 0 0 2870 b36 lib/built-in.o

129669 9068 2884 141621 22935 mm/built-in.o
580407 33816 18856 633079 9a8f7 net/built-in.o

1869 0 0 1869 74d security/built-in.o
325923 11114 3016 340053 53055 sound/built-in.o

134 0 0 134 86 usr/built-in.o

Table 2: size output for 2.6.5 default config

memory footprint, many of which remain to be
examined. What follows are some of the more
notable areas that have been explored.

4.1 Debugging data

The kernel has numerous facilities for trapping
and reporting problem conditions and other
status information, includingprintk() ,
bug() , warn() , panic() , and friends. In
ideal circumstances, these facilities go unexer-
cised. And in the extreme, embedded boxes
may have no means of reporting this data, due
to lack of a display, writable storage, or the
like. Unfortunately, not only do these facilities
use a substantial amount of code, their users
need extra space for error message strings, file-
names, and line numbers.

Linux-tiny has a set of configuration options
to compile out most of this code and remove
the debugging strings and data from the kernel.
Disabling support forprintk() saves well
over 100K. Independent options control the in-
clusion of thebug() infrastructure and sup-
port for trapping panics and doublefaults.

4.2 Optional interfaces

For systems with well-defined application re-
quirements, many of the kernel’s APIs are
unnecessary. Cutting-edge, obsolete, or ob-
scure features are obvious candidates for con-
figurable removal.

• sysfs: The new sysfs filesystem makes
substantial memory demands (which can
be more than half a megabyte even on
the smallest systems) but its features may
well not be essential to current systems.
The -tiny tree was a testbed for options to
entirely remove sysfs or to use a lighter
“backing store” version.

• ptrace, aio, posix-timers: These fea-
tures are among those that are only used
by a small set of applications. These
and other Linux-tiny options are enabled
under the CONFIG_EMBEDDED menu,
which marks them as making the kernel
non-standard.

• uid16, vm86: Some of the many legacy
interfaces in the kernel. Modern appli-
cations and libraries use 32-bit user and

322 • Linux Symposium 2004 • Volume Two

group IDs and vm86 support is used to run
16-bit code for emulators like DOSEMU
and Wine and for some video drivers used
by X.

• ethtool, tcpdiag, igmp, rtnetlink: One of
the most complicated parts of the kernel is
the networking layer, which has grown a
variety of APIs to gain access to its many
features. But for most users, the interfaces
used by the classicifconfig(8) and
route(8) tools are sufficient.

4.3 4K stacks

During the 2.1 kernel series (circa 1998), the
x86 kernel increased the size of the per-task
kernel stacks from 4K to 8K to work around
issues with stack depth. In addition to the ob-
vious increase in overhead for every userspace
process, several new kernel daemons have been
added, all with their own stacks. Another is-
sue is that finding pairs of contiguous pages
to build an 8K stack can be very difficult on a
machine with memory pressure and especially
so on machines with a small number of total
pages.

Many of the problems that made 4K stacks
problematic have since been addressed and 4K
stacks are now practical for most applications.
Linux-tiny has served as an early testbed for
reintroducing 4K stack support to the mainline
2.6 kernel and includes a developer tool called
checkstack that will automatically disas-
semble a kernel to find the most extreme stack
space users.

4.4 The SLOB allocator

Most memory in the kernel is managed ei-
ther directly or indirectly through the SLAB
allocator. SLAB maintains separate caches
for objects of given sizes and types and can
very quickly manage allocations for them. In

some cases, it can even arrange for objects to
be pre-initialized without any additional over-
head. SLAB also has some resistance to trou-
blesome memory fragmentation issues. While
simple in principle, the SLAB code ends up be-
ing quite complex from its efforts to squeeze
the maximum possible performance out of the
allocator.

The primary downside to SLAB is that because
it maintains a collection of independent caches
which are all one or more pages, it ends up
leaving quite a bit of unused space in each
SLAB cache. In addition, askmalloc is im-
plemented on top of SLAB using a set of preset
object size SLABs, there is quite a bit of ex-
tra space allocated for the averagekmalloc
call. Measurements with the previously de-
scribed/proc/kmalloc tool report that ex-
tra overhead can amount to 25-30% of the total
memory allocated bykmalloc .

Linux-tiny provides an optional replacement
for SLAB that I’ve dubbedSLOB(simple list
of blocks). SLOB trades performance for space
efficiency by implementing a more traditional
list-based allocator that also understands re-
quests for objects with particular alignments.
The APIs used by SLAB andkmalloc() are
provided by a small emulation layer.

SLOB manages all objects at a granularity of 8
bytes so overhead for odd object sizes is min-
imized. It also does away with the numer-
ous partly-used caches of the SLOB approach.
Finally, the SLOB code is much simpler and
takes up less than one tenth of the space of the
standard SLAB allocator.

4.5 TinyVT

As you can see from Table 1, the largest single
function in the default kernel isvt_ioctl() ,
which manages many of the special features
of the Linux console. As most early Linux

Linux Symposium 2004 • Volume Two • 323

users didn’t have the memory for running a
full-fledged X desktop, the native Linux text
console is very powerful, with support for
scrollback, selection, virtual console switch-
ing, Unicode translation and character sets,
screen blanking, and so on.

These features can be very handy for some
users, but on a palmtop or kiosk running a
GUI, or for a minimal rescue disk, they’re
dead weight. Linux-tiny includes a heavily
trimmed down replacement for the standard
console code which drops many of these fea-
tures and can trim a couple percent off the size
of the kernel image.

5 Results

Recent releases of Linux-tiny contain the
above options and numerous others. My test
configuration, with support for a text console,
IDE disks, the Ext2 filesystem, TCP/IP, and a
PCI-based network card results in a 363K com-
pressed kernel image. Other users of Linux-
tiny have reported kernel configurations result-
ing in images as small as 191K.

Booting the test configuration withmem=2M,
which gives a total of of 1664K after account-
ing for BIOS memory holes, still leaves ample
room for a lightweight userspace (see Table 6).
A similarly configured mainline kernel without
the -tiny patches compiles to a kernel image
of over 500K and has difficulty booting with
mem=4M.

For comparison, the earliest Linux distribution
kernel I’ve been able to locate, a 0.99pl15 ker-
nel from Slackware 1.1.2 circa 1994, is a mere
301K. Modernhighly-modularized 2.6
kernels from Fedora Core 2 and SuSE 9.1
weigh in at 1.2M and 1.5M respectively while
the default 2.6.5 kernel config builds a 1.9M
compressed kernel.

6 Further directions

There are many further avenues to pursue and
subsystems to trim. Some of the more aggres-
sive ideas on the to-do list include:

• A lightweight replacement network stack:
Minimal TCP stacks like uIP [2] have suf-
ficient functionality for simple network
applications and have extremely small
footprints.

• Replacements for fixed-sized hash tables:
Existing kernel hash tables have difficulty
scaling with workloads and memory sizes.
Other approaches like radix trees might
be better in some areas and avoid wasted
memory when the indexes are empty.

• Support for bunzip2: Linux-tiny now has
a simplified interface to the boot-time de-
compressor and allows for replacements
to be easily dropped in. While bzip2 com-
pression won’t save any memory at run-
time, it will save valuable storage space
on embedded systems.

• Pageable kernel memory: Following an
approach similar to the__init approach
in current kernels, it should be possible
to mark specific functions and data in the
kernel core as pageable, provided they
meet some specific requirements.

• Tracking kernel growth: Using automated
tools to track the size of kernel functions
and subsystems from release to release
will help catch new bloat when it appears.

Of course, as most of the bloat in the kernel has
been introduced in small increments, most of
the improvements will be of the same variety.
Contributions are encouraged!

324 • Linux Symposium 2004 • Volume Two

References

[1] patchwork quilt patch management tools.
http://savannah.nongnu.org/
projects/quilt .

[2] Adam Dunkels. The uip tcp/ip stack for
embedded microcontrollers.
http://www.sics.se/~adam/
uip/index.html .

[3] Matt Mackall. The linux-tiny homepage.
http://www.selenic.com/
tiny-about/ .

[4] Andrew Morton. Patch-scripts.
http://www.zip.com.au/~akpm/
linux/patches/ .

[5] Denis Vlasenko. inline_hunter 2.0 and its
results, 2004.http://lkml.org/
lkml/2004/4/16/191 .

Linux Symposium 2004 • Volume Two • 325

1560 get_current (1294 in *.c)
calls:
callers: <other>(336) capable(122) unlock_kernel(44) lock_kernel(33)
flush_tlb_page(11) flush_tlb_mm(10) find_process_by_pid(6)
flush_tlb_range(4) current_is_kswapd(4) current_is_pdflush(3)
rwsem_down_failed_common(2) on_sig_stack(2) do_mmap2(2) __exit_mm(2)
walk_init_root(1) scm_check_creds(1) save_i387_fsave(1)
sas_ss_flags(1) restore_i387_fsave(1) read_zero_pagealigned(1)
handle_group_stop(1) get_close_on_exec(1) fork_traceflag(1)
ext2_init_acl(1) exec_permission_lite(1) dup_mmap(1) do_tty_write(1)
de_thread(1) copy_signal(1) copy_sighand(1) copy_fs(1) check_sticky(1)
cap_set_all(1) cap_emulate_setxuid(1) arch_get_unmapped_area(1)

546 current_thread_info (286 in *.c)
calls:
callers: <other>(207) copy_to_user(95) copy_from_user(86)
tcp_set_state(22) test_thread_flag(20) verify_area(13)
tcp_enter_memory_pressure(6) sock_orphan(3) icmp_xmit_lock(2)
csum_and_copy_to_user(2) tcp_v4_lookup(1) sock_graft(1)
set_thread_flag(1) neigh_update_hhs(1) ip_finish_output2(1) gfp_any(1)
fn_flush_list(1) do_getname(1) clear_thread_flag(1) alloc_buf(1)
activate_task(1)

413 atomic_dec_and_test (55 in *.c)
calls:
callers: put_page(103) kfree_skb(101) <other>(47) mntput(34)
in_dev_put(23) neigh_release(19) tcp_tw_put(18) fib_info_put(17)
sock_put(15) put_namespace(6) mmdrop(6) __put_fs_struct(4)
tcp_listen_unlock(3) ipq_put(3) finish_task_switch(2) __detach_pid(2)
task_state(1) de_thread(1)

255 tcp_sk (134 in *.c)
calls:
callers: <other>(117) tcp_reset_xmit_timer(30) tcp_set_state(22)
tcp_current_mss(13) tcp_initialize_rcv_mss(6) tcp_free_skb(6)
tcp_check_space(6) tcp_data_snd_check(5) tcp_clear_xmit_timer(5)
tcp_synq_removed(3) tcp_select_window(3) westwood_update_rttmin(2)
westwood_acked(2) tcp_synq_len(2) tcp_synq_drop(2)
tcp_ack_snd_check(2) __tcp_inherit_port(2) tcp_use_frto(1)
tcp_synq_young(1) tcp_synq_is_full(1) tcp_synq_added(1)
tcp_prequeue(1) tcp_listen_poll(1) tcp_event_ack_sent(1)
tcp_connect_init(1) tcp_acceptq_queue(1) do_pmtu_discovery(1)

Table 3: Some large inline counts and users for 2.6.5-tiny1

326 • Linux Symposium 2004 • Volume Two

Size Uses Wasted Name and definition
===== ==== ====== ==

56 461 16560 copy_from_user include/asm/uaccess.h
122 119 12036 skb_dequeue include/linux/skbuff.h
164 78 11088 skb_queue_purge include/linux/skbuff.h

97 141 10780 netif_wake_queue include/linux/netdevice.h
43 468 10741 copy_to_user include/asm/uaccess.h
43 461 10580 copy_from_user include/asm/uaccess.h

145 77 9500 put_page include/linux/mm.h
49 313 9048 skb_put include/linux/skbuff.h

109 101 8900 skb_queue_tail include/linux/skbuff.h
381 21 7220 sock_queue_rcv_skb include/net/sock.h

55 191 6650 init_MUTEX include/asm/semaphore.h
61 163 6642 unlock_kernel include/linux/smp_lock.h
59 165 6396 lock_kernel include/linux/smp_lock.h

127 59 6206 dev_kfree_skb_any include/linux/netdevice.h
41 289 6048 list_del include/linux/list.h
73 83 4346 dev_kfree_skb_irq include/linux/netdevice.h

131 39 4218 netif_device_attach include/linux/netdevice.h
110 44 3870 skb_queue_head include/linux/skbuff.h

84 59 3712 seq_puts include/linux/seq_file.h
57 75 2738 skb_trim include/linux/skbuff.h
45 96 2375 skb_queue_head_init include/linux/skbuff.h
41 111 2310 list_del_init include/linux/list.h

102 23 1804 __nlmsg_put include/linux/netlink.h

Table 4: Size estimates found by inline_hunter

Linux Symposium 2004 • Volume Two • 327

cat /proc/kmalloc
total bytes allocated: 266848
slack bytes allocated: 37774
net bytes allocated: 145568
number of allocs: 732
number of frees: 282
number of callers: 71
lost callers: 0
lost allocs: 0
unknown frees: 0

total slack net alloc/free caller
256 203 256 8/0 alloc_vfsmnt+0x73

8192 3648 4096 2/1 atkbd_connect+0x1b
192 48 64 3/2 seq_open+0x10

12288 0 4096 3/2 seq_read+0x53
8192 0 0 2/2 alloc_skb+0x3b

960 0 0 10/10 load_elf_interp+0xa1
1920 288 0 10/10 load_elf_binary+0x100

320 130 0 10/10 load_elf_binary+0x1d8
192 48 96 6/3 request_irq+0x22

7200 1254 7200 75/0 proc_create+0x74
64 43 64 2/0 proc_symlink+0x40

4096 984 0 1/1 check_partition+0x1b
69632 0 45056 17/6 dup_task_struct+0x38

128 48 128 2/0 netlink_create+0x84
128 20 128 1/0 ext2_fill_super+0x2f

32 28 32 1/0 ext2_fill_super+0x385
32 31 32 1/0 ext2_fill_super+0x3b6

608 76 384 19/7 __request_region+0x18
64 32 64 2/0 rand_initialize_disk+0xd

8192 2016 8192 2/0 alloc_tty_struct+0x10
128 56 128 2/0 init_dev+0xba
128 56 128 2/0 init_dev+0xf3
128 0 128 2/0 create_workqueue+0x28

8960 1680 8960 70/0 tty_add_class_device+0x20
2048 960 2048 4/0 alloc_tty_driver+0x10
9280 2332 9280 4/0 tty_register_driver+0x2d

288 0 288 9/0 mempool_create+0x16
1280 196 1280 9/0 mempool_create+0x41
1536 384 1536 8/0 mempool_create+0x8f

64 28 64 1/0 kbd_connect+0x3e
928 348 0 29/29 kmem_cache_create+0x235

28288 1448 28288 81/0 do_tune_cpucache+0x2c
...

Table 5: Tracking usage of kmalloc/kfree in -tiny

328 • Linux Symposium 2004 • Volume Two

Uncompressing Linux... Ok, booting the kernel.
mount /proc
cat /proc/meminfo
MemTotal: 980 kB
MemFree: 312 kB
Buffers: 32 kB
Cached: 296 kB
SwapCached: 0 kB
Active: 400 kB
Inactive: 48 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 980 kB
LowFree: 312 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
Mapped: 380 kB
Slab: 0 kB
Committed_AS: 132 kB
PageTables: 24 kB
VmallocTotal: 1032172 kB
VmallocUsed: 0 kB
VmallocChunk: 1032172 kB
#

Table 6: Boot log for a 2.6.5-tiny1 test configuration with mem=2m

